

How Does The Internet Work?

Introduction to technical resources

Marco Hogewoning | February 2016 | Bucharest, Romania

Rocket Science?

the premature shutdown of two engines in the S-II stage. After this occurred, the trajectory deviated significantly from the nominal throughout the remainder of the mission. Separation Instrument Unit ¬ A shift from normal performance occurred at approximately 319 seconds. **3259** The performance change is evidenced by a thrust decrease of 33,806 Newtons (7600 lbf). This has been attributed to an ASI fuel line leak on engine 260" S-IVB No. 2. At approximately 413 seconds a large step cecrease in stage Dia performance was evidenced by a reduction of stage thrust to 3,002,535 2747 Newtons (675,000 lbf) and a change of propellants flowrate from 1213 to 2646 (Gimbal) 730.3 kg/s (2675 to 1610 lbm/s). This abrupt change in performance, 2519 approximately 40 percent, was caused by the shutdown of engines No. 2 396" Dia S-II A chronological list of events that are believed to have led to the failure of engine No. 2 are discussed briefly in Table 6-4. Postflight 1760 1664 (Gimbal) 1564 data analysis led to the conclusion that the ASI fuel line, shown in Figure 6-8, had cracked at approximately 225 seconds and continued to 1541 leak progressively until 319 seconds. Since the flight, testing at S-IC Engine No. 3 cutoff resulted from a wiring harness installation error; the control harnesses for engines No. 2 and 3 LOX prevalve solenoids were interchanged. (Plug 206W17P7 was misconnected to receptable 206A507J1 instead of 206A508J1 and plug 206W17P8 was misconnected to 206A508J1.) 100 (Gimbal) -116 Nine of the sixteen primary objectives of this mission were completely accomplished, six partially accomplished, and one (S-IVB restart) was not accomplished. One of the two secondary objectives was completely accomplished, and one partially accomplished.

The actual trajectory parameters of the AS-502 were close to nominal until

Marco Hogewoning | February 2016

Lessons to Learn?

- It relies on a complex interaction between different systems, all doing part of the job
- You need redundancy
- You need spare capacity
- Mistakes can and will happen

Be Pragmatic in Your Solutions

- Wires were shortened to make the accidental crossover impossible
 - ...and they redesigned the fuel line

The Internet Model Understanding the layers

Marco Hogewoning | February 2016

(PS: OSI ≠ Internet)

Compatible

Interoperable

Marco Hogewoning | February 2016

(PS: OSI \neq Internet)

Implement What You Need

Interactions Between Layers

- Be open
- Be flexible
- Don't interfere with the other ones
 - Consider their constraints and requirements

The Internet Model

Technical Resources Standards

"Internet Standards"

- Are developed by the Internet Engineering Task Force (IETF)
 - Open community
 - Transparent process
 - Decisions by rough consensus
- Process driven by observations and needs
- Organised in working groups
 - Each group focusses on a particular issue or topic

Request For Comments (RFC)

- Output of the IETF standardisation process
- Public documents
 - Access is free
 - Implementation is free
- Also can be informational or "historic"
- An RFC can update or obsolete another one
 - That does not invalidate the old one
 - A published RFC will never be changed

RFCs Are Voluntary Standards

• Your choice to implement a particular one

• Two Rules:

- If you implement, fully adhere to the standard
- If you don't implement, don't break anything
- You can always create your own standard
 - Document your solution to benefit others
 - Peer review and discussion can improve it

Competing Standards

- It is perfectly fine
 - It means you have a choice
- Important that they are not interoperable
 - Avoid any confusion or doubt
 - Don't interfere with other standards
- Important they are compatible
 - They need to co-exist side by side
 - They need to interface with other layers

Mutual Benefit

There is a commercial incentive

- Interoperability creates a bigger market
- Networking effect will strengthen your choice
- Ability for "permissionless innovation"
 - Build on or further develop other people's work
 - They might also benefit from your development

Technical Resources number spaces

Protocols Rely on Numbers

- To be interoperable:
 - Find each other, e.g. IP addresses
 - Understand each other, e.g. response codes
- To be compatible:
 - Distinguish between standards, e.g. TCP and ICMP
 - Connect the different layers, e.g. tcp port numbers

Fixed and Variable Numbers

- Some are fixed within the standard
 - IP version numbers, response codes, etc.
- Some are defined as variables
 - IP address, DHCP option codes
- Some are semi-flexible
 - HTTP defines response 400-499 as "Client error"
 - 451 recently defined as "Blocked for legal reasons"

Keeping Track

- Numbers often need to be unique
 - Assurance for compatibility and interoperability
- Several option exist
 - Document them as part of the standard
 - Define them via a separate standard
 - Use a registry to administer them

Coordination

- Somebody needs to coordinate all of this
 - Ensure uniqueness
 - Provide available numbers
 - Document what everybody is using
- Internet Assigned Numbers Authority"
 - Used to be an IETF volunteer: Jon Postel
 - Contracted by US Government
 - IANA is now a department within ICANN

Standards Are Voluntary

- This reflects in the number spaces
 - Standard compliance involves following the registry
- Mutual benefit is the driver
 - Using registered numbers makes me compatible
 - Adherence to registry rules makes me interoperable

RIRs: A Matter of Scalability

- IP addresses became a fundamental resource
 - Everything was being build on top of the Internet Protocol
- Operational requirements asked for details
 - Who is responsible for a particular set of addresses?
 - How can I contact them?
- This registry grows with each network or device that connects to the Internet

The RIR System

Regional Internet Registries

- There are five RIRs globally:
 - RIPE NCC (est. '92), APNIC ('93), ARIN ('97), LACNIC ('01) and AFRINIC ('05)
- Origins can be traced back to IETF
 - They started looking for ways to scale up the registry

- Loosely modelled to the IETF
 - Open and transparent policy development
 - Decisions made by rough consensus

Benefits Of Being Regional

- Policy development can take into account regional differences in market developments
- Closer to the resource users
 - We need to know who they are
 - Easier to maintain an accurate registry

Keeping An Accurate Registry

- Ensures the resources are unique
- Provides transparency on distribution
- Enables contact with the network operator

Global Coordination

- IANA is responsible for global resources
 - Protocol parameter registries
 - Global IPv4 and IPv6 address registries
- Policy for IP addresses is created through the five regional RIR community processes
- Protocol parameters are defined using the IETF standardisation process
 - Includes special use IP addresses, e.g. multicast

Making It Work Connecting to the Internet

Network of Networks

- Any network can become part of the Internet
 - It is free and it is open
- Implement the open IETF standards
 - IP protocol, BGP and a few others
- Get a set of globally unique resources
 - Ask your RIR for IP addresses and an AS number
- Connect to a network that did the same

It Is a Matter of Trust

- This is a "social contract"
 - Only send/receive traffic according to the standards
 - Only use resources that are registered to you
- Don't harm other networks
 - Or other people's packets
- Cooperate operationally with other networks
 - Keep the Internet stable
 - Keep the Internet secure

Mutual Benefit

- Nobody "owns" the Internet
 - There is no backbone
 - Your network, your rules
- You choose who you connect with
 - Settlement free peering arrangements
 - Paid connection via a carriage provider (transit)
- Customers on both side have benefit
 - Which is reflected in your business

A Bit on Names

Because We Are Bad With Numbers

- Humans have hard time remembering them
 - Computers are better with numbers than names
- An IP address represents a network location
 - Change your location, your IP address changes
 - Addresses can be and are commonly shared

Domain Name System

- A set of protocols developed by the IETF
 - Distributed database that maps names to numbers
 - Will tell you the IP address (network location) of a service or device you want to connect to
- It is an application on the Internet

Management of the DNS

- Coordinated via ICANN
 - Pay attention to the next talk :)

Future? A quick look forward

Internet of Things

- A lot of IoT does not use the IP protocol
 - That doesn't mean it isn't part of the Internet
 - It might use other "Internet" protocols
- The network of networks keeps expanding
 - IPv6 is the enabler of this future growth

Keep a High Level View

- Don't get too strict on definitions
- Competitive standards are a feature
 - They enable further innovation
 - Evolution is a natural property of the Internet
- Support and encourage the open model
 - Participate in the relevant forums
 - Cooperate with other stakeholders

Please tell us how we can help you.

Questions

marcoh@ripe.net